

Irrigation System Evaluation Why and How

Lyndon Kelley

MSU Extension / Purdue University Irrigation Management Agent St. Joseph Co. MSU Extension, 612 E. Main St., Centreville, MI 49032 Cell 269-535-0343, <u>Kelleyl@MSU.EDU</u>, 269-467-5511

http://msue.anr.msu.edu/resources/irrigation

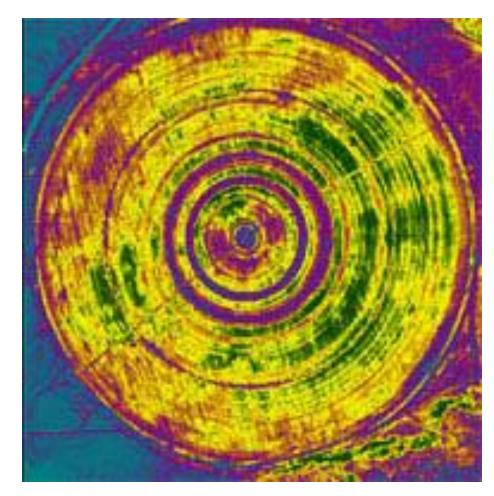
https://engineering.purdue.edu/ABE/Engagement/Irrigation

Irrigation System Evaluation - Goal is to answer these questions

- •How much water am I really applying
- •How uniform is the application
- •Am I applying water at a rate that the soil can take it in

Irrigation System Uniformity

An 1" application should be 1" everywhere in the irrigated field


- 10% or less deviation from the average is ideal.
 Over applied area will likely be over applied each application
- •Under applied areas will likely be under applied each application

A 30% deviation on a field in an 8" irrigation application year will have areas receiving as little as 5.6" and as great as 10.4"

Repair all visible system leaks and problems first.

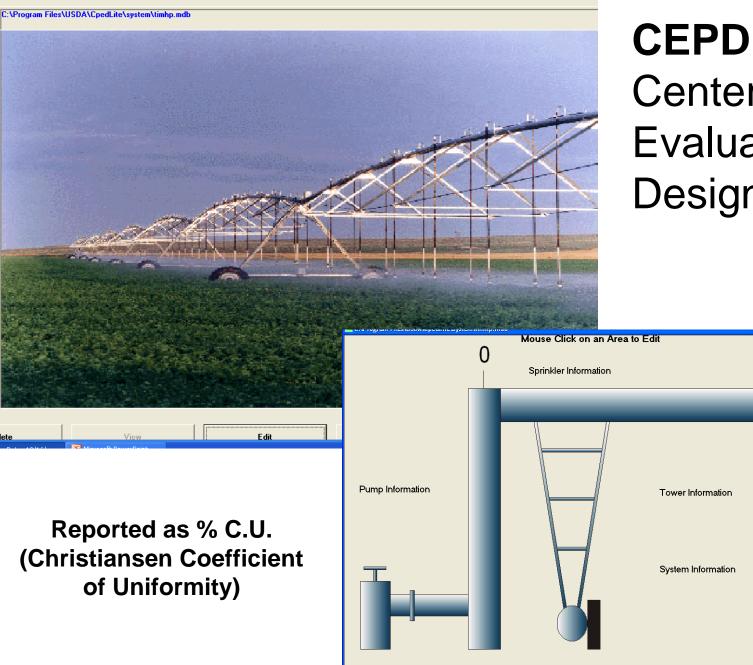
Low Uniformity = Under Application in areas = Reduced Yields

Even with adequate scheduling a 30% deviation is application uniformity can result in a 40% yield reduction in low application areas of the field.

Water savings = Energy Savings = Reduced Expenses = Increase Profitability

A 30% deviation on a field in an 8" irrigation application year will have areas receiving as little as 5.6" and as great as 10.4"

- To over apply by 30% to make up for lack of uniformity will take an additional 2.4" of water.
- With average energy cost nearing \$3.00/ acre"
- A typical 140 acre irrigated field with a 30% deviation will cost over \$1000/ year more than uniform system to irrigate.


Stick with the Plan!!!!

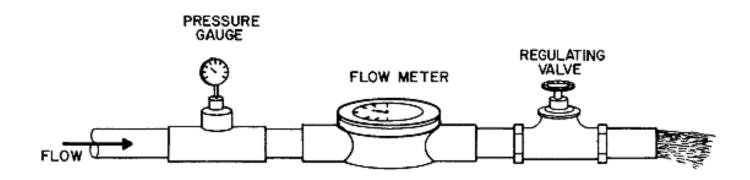
Make sure the system is within it's design.

- Has the system changed in length or coverage area?
- Is the water supply flow and pressure what was designed for?
- Sprinkler height?
- End drive changes?
- Tire changes?

Center Pivot Evaluation and Design Program



Center Pivot Evaluation & Design


0	Mouse Click on an Area to Eult						
	Sprinkler Information	:	Span Information				
		Tower Information System Information					

Measure Pressure:

- at pivot point and last sprinkler
- If pressure differ from chart specification > 10%, measure flow

Measure flow at desired pressure prior to ordering sprinkler package

Poor performance:

Ask dealer to measure flow at peak water use season and compare to design parameters.

Irrigation System Uniformity

- Over 20 Irrigation uniformity trainings since May 2005
- Private consultants, Farmers, Extension, SCD, and NRCS personal

Evaluating Irrigation System Uniformity

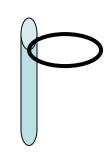
Standards and Methods for Evaluation of Irrigation System Uniformity

- Two commonly accepted standards or methods are available as guidelines for performing evaluations of Irrigation System Uniformity.
- ASAE Standards (436.1) Available at: http://msue.anr.msu.edu/uploads/236/43605/ASAE_S436.1.pdf
- NRCS Handbook Available at your local Natural Resource Conservation Service office

Irrigation System Uniformity

Basic system evaluation

Collect enough uniform container to place every 10 feet the length of the system or across the application pattern.


Spread the container every ten feet from the center point to the outside edge of the application area.

Run the system at standard setting over the container.

Measure and record the water volume caught by each container.

Note sample point varying greater than 50% of the average.

Evaluating Irrigation Uniformity Catch can stands

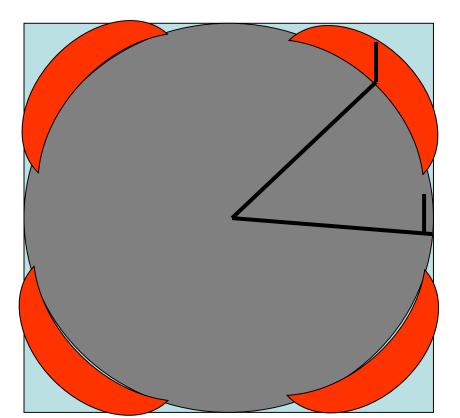
A simple, inexpensive catch can stand can be built using:

- 1. 32 oz. Deposable soda cup (Taco Bell cup)
- 2. 3" plastic drain pipe cut to 5" in length
- 3. 2"x3" stud cut to length to wedge into plastic drain pipe
- 4. Drill hole 1.5" into cut 2"x3" stud chucks, drill hole should snuggly fit electric fence post
- 5. Steel (step in) electric fence post

Electric fence post and cups can be stored and transported in separate stacks. The 2"x3" stud chucks wedge into the base of the cut plastic drain pipe sections and make the transition between the cup and post. Screw maybe pace through the side of the plastic drain pipe into the 2"x3" stud chucks. Total cost per unit is less than a dollar and require only a saw, drill and screw driver. It will allow data collection

Evaluating Irrigation System Uniformity

Pivot Extensions (cornering arm or Z-arm)


- Some center pivot irrigation systems are designed to expand the wetted area to allow coverage of corner or odd-shaped fields, often referred to as cornering arms or Z-arm.
- These systems require two separate evaluations if the extension accounts for 30 percent or more of the irrigated portion of the field.

•One evaluation will evaluate the system while extended, and a second when the arm is not deployed.

Pivot Extensions (cornering arm or Z-arm)

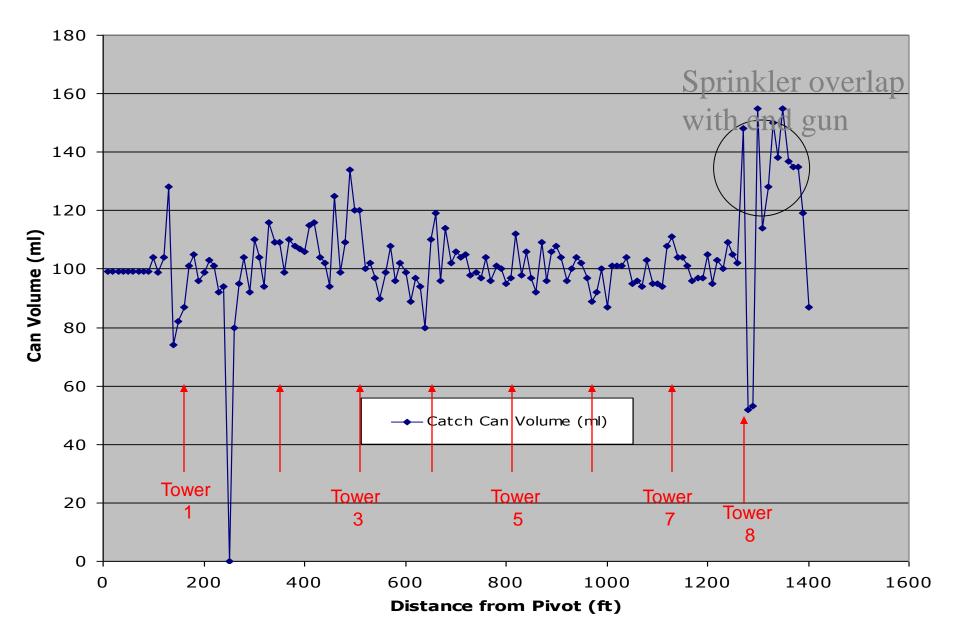
60 % out, 40 in Two tests needed

90 % out, 10 in One test needed

Uniformity and coverage area is often a trade off.

Uniformity and coverage area is often a trade off.

Labor...

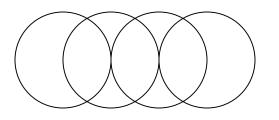


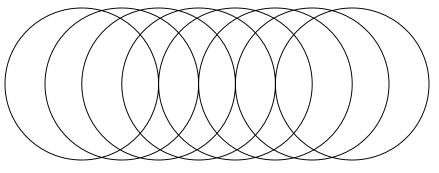
Uniformity and coverage area is often a trade off.

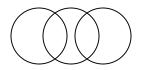
Alternate years.

Catch Can Volume (ml)

http://web1.msue.msu.edu/stjoseph/anr/anr.htm


Irrigation System Uniformity


•Most system are designed to have 90% or better uniformity


•Changes in **volume** and **pressure** from design parameters will cause reduction in uniformity

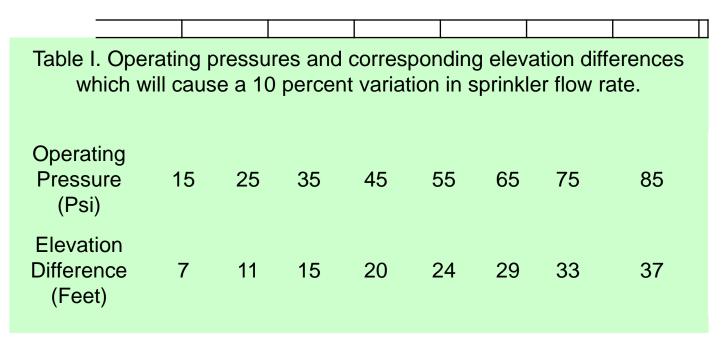
•Some sprinklers can perform well over a large change in pressure over others

•Multiple overlaps tends to reduce potential problems

Pressure regulators

WISHNE-SAMPLE

WISH NEBRASKA INC


JANUARY	20, 2010	WISHNE-SAMPLE
CUSTOMER :		LOCKWOOD 2000 7 TOWER - 1317.98 FT SYSTEM 800 GPM @ 40 PSI AT TOP OF PIVOT
FIELD LEGAL P.O. NO. CROP	:	NELSON R3000 ROTATORS NELSON 20 PSI REGULATORS NELSON SR-100 .75 TB ELEVATION 5 FT UP. 5 FT DOWN

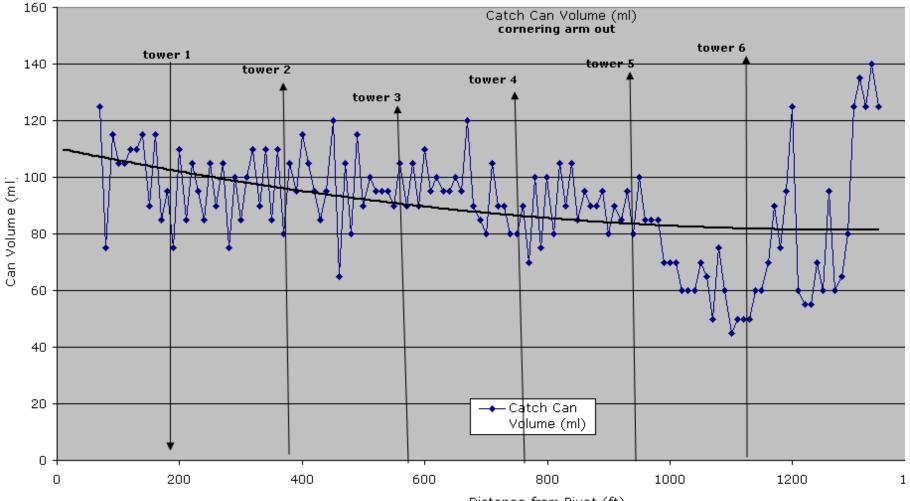
Pressure regulators

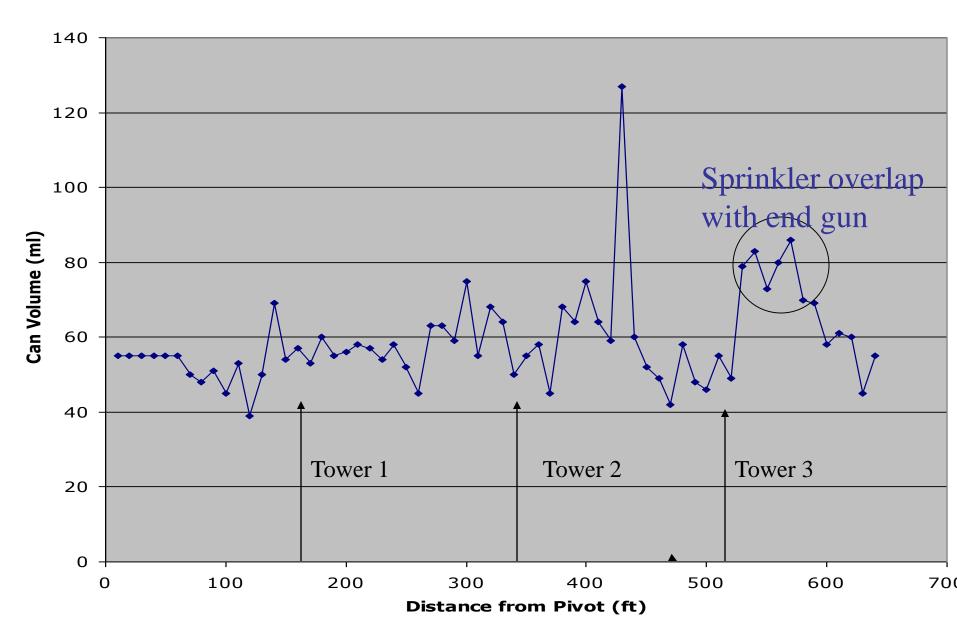
HOW MUCH ELEVATION CHANGE IS ACCEPTABLE?

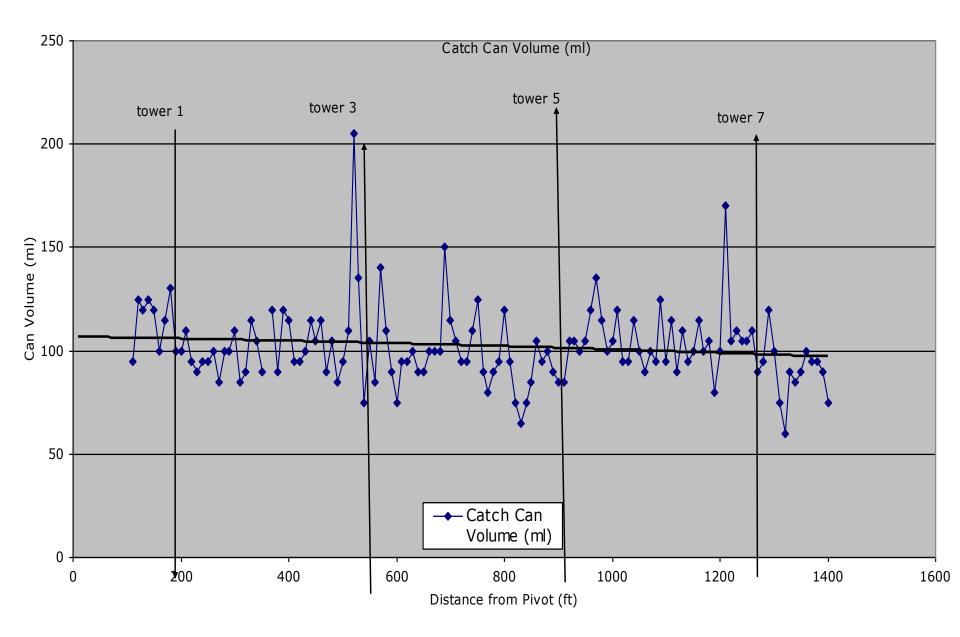
LESS THAN 10% FLOW VARIATION IS A GOOD RULE OF THUMB.

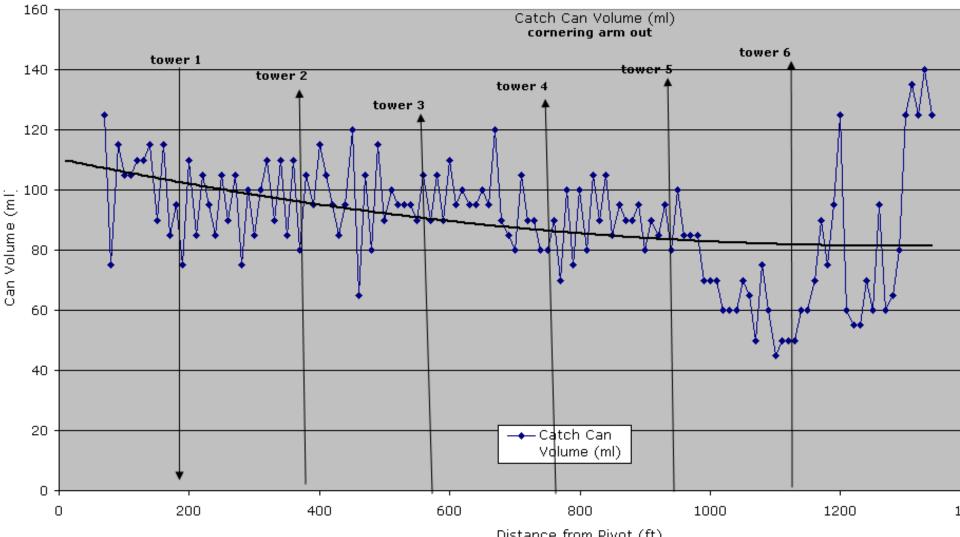
Lower design pressure allows less elevation change before pressure regulators are recommended.

A 1% slope in \under a 1320' machine is 13' A 2% slope in \under a 1320' machine is 26' http://www.ianrpubs.unl.e du/pages/publicationD.jsp ?publicationId=742


Greatest improvement needed


- End gun stop adjustment
- Water supply over or under design
- End gun orifice, too little or too much
- Wrong sprinkler or tip
- Leaks, plugs and <u>no turn sprinklers</u>

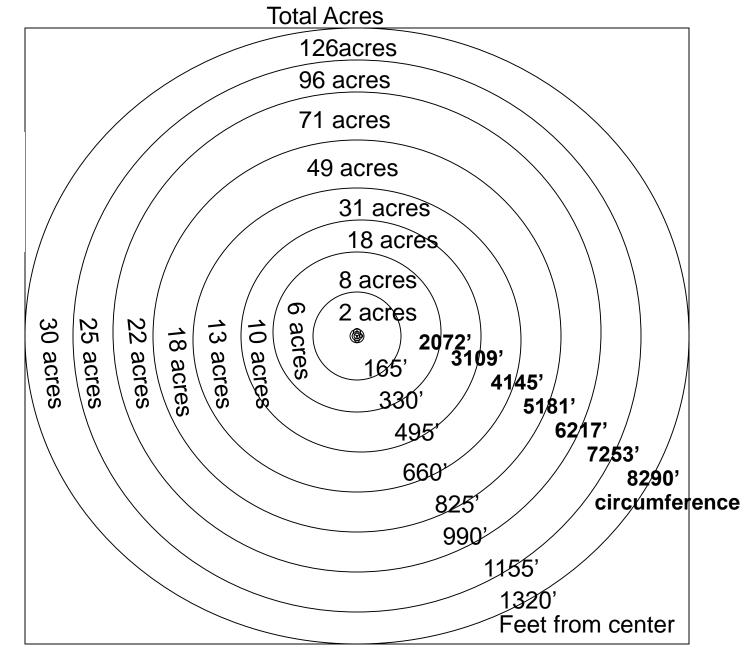

Water supply over or under design


supply over design yield tail up, supply under design yield tail down

Example of Water supply under volume for sprinkler design

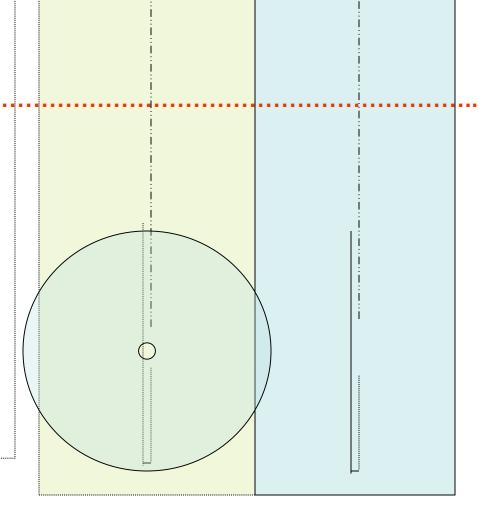
Distance from Pivot (ft)

Creating a Take-home Message for the Producer

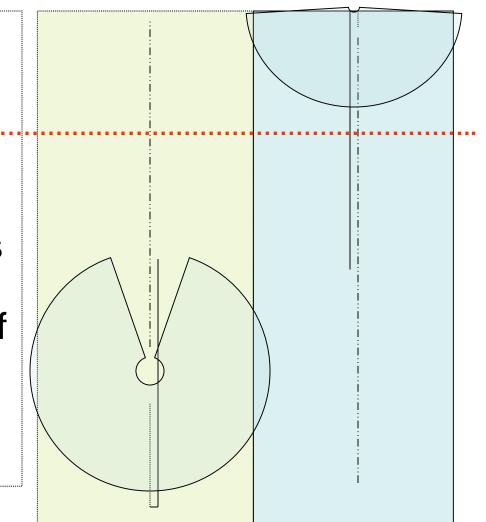

- The System Uniformity Coefficient provides the producer with a report of the overall performance of the system. Almost all systems will benefit from some corrections.
- Correction of areas of the system with greater than 20 percent deviation from average (red in the spreadsheet) will improve performance.
- Entering a second data set, replacing the red (high deviation) data with the "average catch can (ml)" data, will create a before/after scenario that will identify the benefits of repairs or corrections to the system.

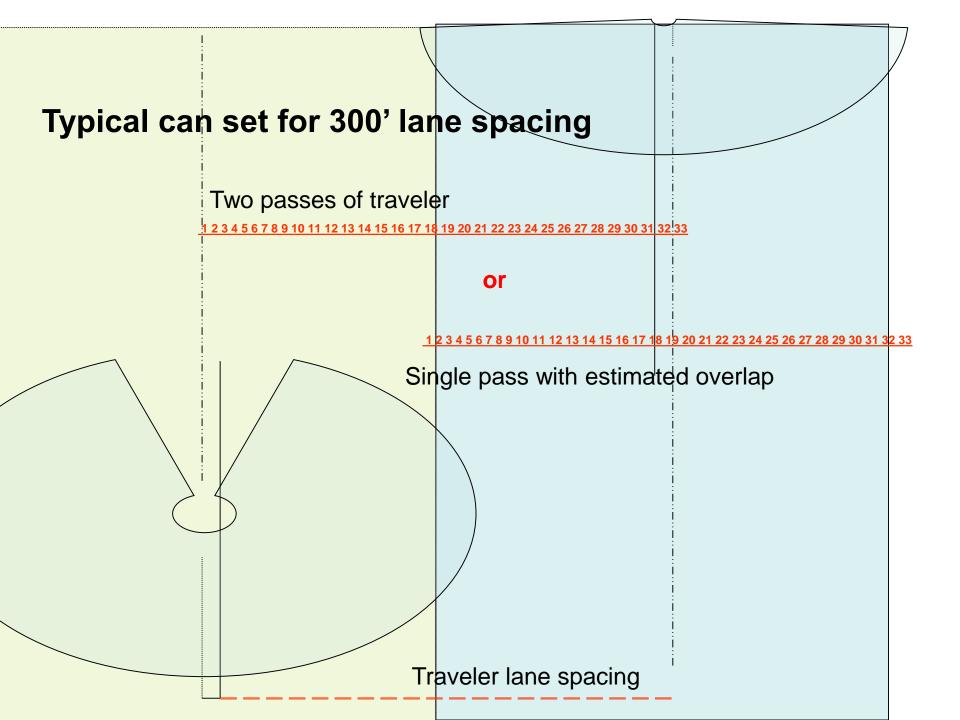
Graph of performance

The Excel spreadsheet can produce a line graph of systems uniformity. The data will not be weighted for coverage area represented by each cup.


Entering pivot wheel tracks into the graph using Microsoft standard AutoShape will make the graph more usable to irrigators. Over and under application issue affect the majority of the application

area


Improving Traveler Uniformity


- Check traveler uniformity by placing catch can every 10' across the width of the... coverage pattern
- Traveler lane spacing should be adjusted to create an even application between lanes.
- Spacing will be narrower further from pump or additional pressure will need to be provided

Improving traveler uniformity

- Measure traveler forward speed at the beginning middle and end of the run.
- Traveler forward travel speed maybe reduce as more hose is being pulled in the second half of the run.
- Adjust speed accordingly.

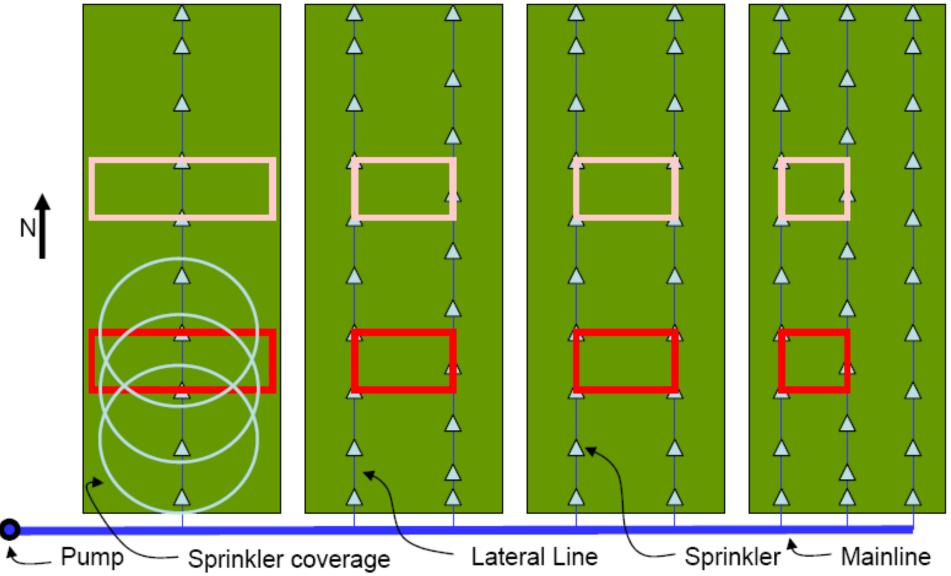
Trickle, Solid set and Manual Move System Uniformity

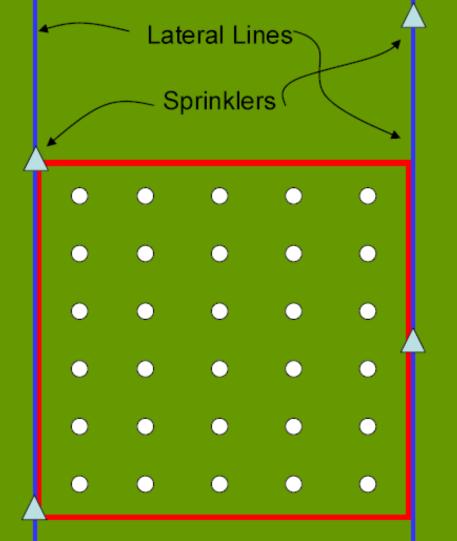
- Stick with the Plan!!!!

Make sure the system is with in it's design.

- Has the system changed in length or coverage area.
- Is the water supply flow and pressure what was designed for.
- Sprinkler height?

http://msue.anr.msu.edu/uploads/files/Microsoft%20Word%20-%20FactSheetTemplate%20Water%20Application.pdf


Solid set and manual move system uniformity


Sources of system uniformity evaluation.	Wisconsin State Cranberry Growers Association EOUNDED 1887 DETAILED CRANBERRY IRRIG Wisconsin State Cranberry Growers Association 132 East Grand Avenue, Suite 202; PO Box 365 Wisconsin Rapids, WI 54495-0365 (715) 423-2070	U.S. Department of Agriculture ORCS Natural Resources Conservation Service ATION SYSTEM ASSESSMENT Wisconsin NRCS 8030 Excelsior Drive Madison, WI 53717 (608) 662-4422			
	<i>Www.wiscran.org</i> Detailed Evaluation Procedures for Cranberry Irrigation Systems: The overall efficiency of sprinkler irrigation systems changes with time. Nozzles, sprinkler heads, and pumps wear, and pipes and joints develop leaks. Some systems	WWW.wi.nrcs.usda.gov II. Field procedures General Obtain pertinent information about irrigation system specifications from the irrigation decisionmaker and from visual observation. Observe general system operating condition, crop uniformity, wet areas, dry areas, and wind			
UF FLORIDA IFAS	Bulletin 266				
A.G. Smajstrla, B.J. Boman, G.A. Clark, D.Z. Hama					
Introduction This bulletin describes techniques for measuring operating pressures, water application rates and uniformity during field explorations of solid set or	manifold pipes, are placed in a regular pattern over the entire irrigated area. All of the sprinklers may be operated at once, or the crop may be irrigated in zones by operating only a portion of the sprinkler				

uniformity during field evaluations of solid set or portable sprinkler irrigation systems. These irrigation

laterals at a time.

Figure 1

10' by 10' catch-can grid, with border cans 5' from edge of grid Adapted from: NRCS National Engineering Handbook, Part 652 – Irrigation Guide, Chapter 9, September 1997

Most system apply within 85% of the expected application

1	1 MSU Extension Irrigation System Evaluation Tool, 1-23-07												
2	Farm Name	-	arm										
3							System	Uniformi	ty Coeff	icient =	<u>79</u>		
4	Sγstem Iden	tification	Cornering Ar	m System on		e Farm-Behind House		Good Syste	em uniformit	γ coefficient a	re 85 or greater	1	
5	-		Cornering Ar				Deviation from desired application			plication =	-0.04		
6	System Sett	ings	_									l_{Δ}	
7	Applica	ition rate (in)	0.5				Wind	speed (mph)		4 mph	1.	~P/in	
8	Percent time					Wind Con	dition (variable or steady)			steady	41	N ati	
9		^p ressue (psi)										Delicatio	$n \sim$
10			lication calc									Oto	's
11						section of system (min		22		Inches/Hour	1.25 ^v	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
12		Rate of appli	cation for the	highest rate	section of sy	stem (minute /one inch		48.00					ati 1
13							Average App			1.164			
14			ation area (ft)				Average Ap	plication (in)		0.46			
15	Catch	Can Spacing	Distance (ft)	10									
16						Average catch, collected only (ml)				88.95			
17	number of		ollected from	129		70% average catch can				59.94			
18		numbe	r of cans set	134			on area, full circle (acres) an openning area (sq cm)		122.82				
19 20			tah any (awa)	9.9			can openning area (sq cm)			76.977 11.767			
20	U	ameter of ca	tch can (cm)	9.9		catch	can openning) area (sq in)		11.767			
21			Distance	catch	Data					Deviation	Area covered	Area covered	
23	catch can		from center	volume in	adjustment		Water	Water	% applied	from	per catch can		Weighted
23	number		point	ml	aujustment	Comments	volume (cm)		of average	average (%)	(acres)	(% of total)	Deviation
25	1		10		88.95		1.156	0.455	99.26%	-0.74%	0.01623	0.01%	0.0001
26	2		20		88.95		1.156	0.455	99.26%	-0.74%	0.02885	0.02%	0.0002
27	3		30		88.95		1.156	0.455	99.26%	-0.74%	0.04327	0.04%	0.0003
28	4		40		88.95		1.156	0.455	99.26%	-0.74%	0.05770	0.05%	0.0005
29	5		50		88.95		1.156	0.455	99.26%	-0.74%	0.07212	0.06%	0.0006
30	6		60		88.95		1.156	0.455	99.26%	-0.74%	0.08655	0.07%	0.0007
31	7		70	125	0.00		1.624	0.639	139.48%	<u>39.48%</u>	0.10097	0.08%	0.0011
32	8		80	75	0.00		0.974	0.384	83.69%	-16.31%	0.11539	0.09%	0.0008
33	9		90	115	0.00		1.494	0.588	128.32%	28.32%	0.12982	0.11%	0.0014
34	10		100	, 105	0.00		1 364	0.537	117 16%	17 16%	N 14474	Π 12%	0.0014
H 4													

	A	В	D	E	F	G	Н		J	K
1			_							
2	MICHIC	<u>SAN SIAIE</u>								
3	UNIV	ERSITY	Puri							
4	FXTF	GAN STATE E R S I T Y ENSION		SITY						
5			UNIVER	5111						
6										
7			, Water Applied E							
8	MSU Exter	nsion, St. Joseph	County	V 1.0						
9				7/24/2007						
10										
11		<u></u>								
12		% Timer Setting	Hours to Run	Water Applied						
13			Circle							
	Measured	40	72	1.25		L,				
15		-								
	Estimated		576.00	10.00						
17		10	288.00	5.00						
18		15	192.00	3.33						
19		20	144.00	2.50						
20		25	115.20	2.00						
21		30	96.00	1.67						
22		35	82.29	1.43						
23		40	72.00	1.25						
24		45	64.00	1.11						
25		50	57.60	1.00						
26		55	52.36	0.91						
27		60	48.00	0.83						
28		65	44.31	0.77						
29		70	41.14	0.71						
30		75	38.40	0.67						
31		80	36.00	0.63						
Image: Market 1 / Sheet 2 / Sheet 3 /										

Preventing Irrigation Runoff (comparing irrigation application rate to soil infiltration rate)

Preventing Irrigation Runoff

(comparing irrigation application rate to soil infiltration rate)

Sprinkler package or nozzle selection along with pressure dictates water application rate.

Factors that *increase* runoff :

- •Small Wetted area or throw of sprinkler
- Low Pressure
- Larger applications volumes
- •Soil compaction
- Heavy soils
- •Slope
- •Row hilling

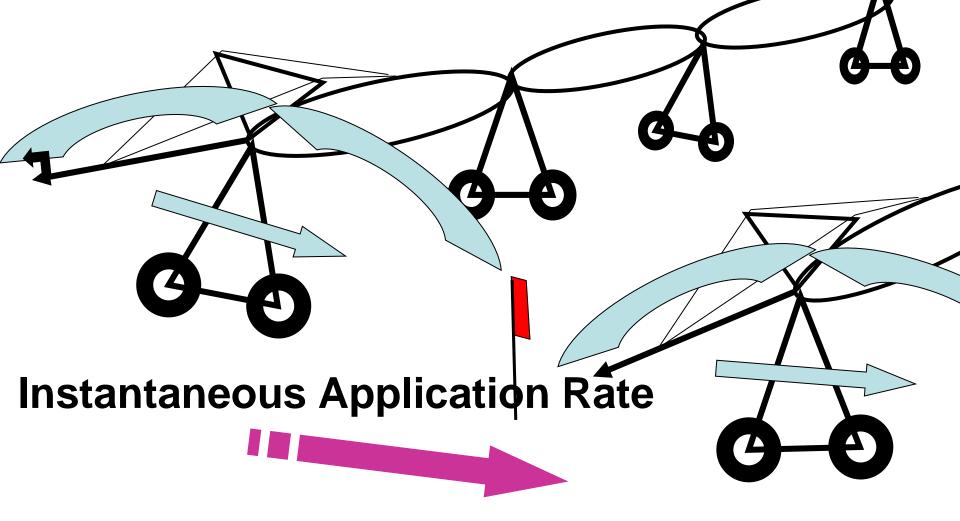
Instructions for completing the *Evaluating Potential Irrigation Runoff* form:

- 1. Identify the areas of the irrigated field that has the lowest infiltration rates. (heavy soils, slopes, surface compaction).
- 2. Select a transit line in the wetted area just behind the machine that covers the identified lowest infiltration rates of the field identified above.

Instructions for completing the *Evaluating Potential Irrigation Runoff* form – continued

- 3. Pace or measure 50 feet between observations starting at the pivot point and progressing to the furthest reaches of the machine.
- 4. Record observations for each location; look at several (4-5 areas) representing the row contour and differences in row traffic of the location. Record any specific concerns that may affect the application (drips or leaks) or affect the soils ability to take in water (compaction, row contours)

Key for Observation column

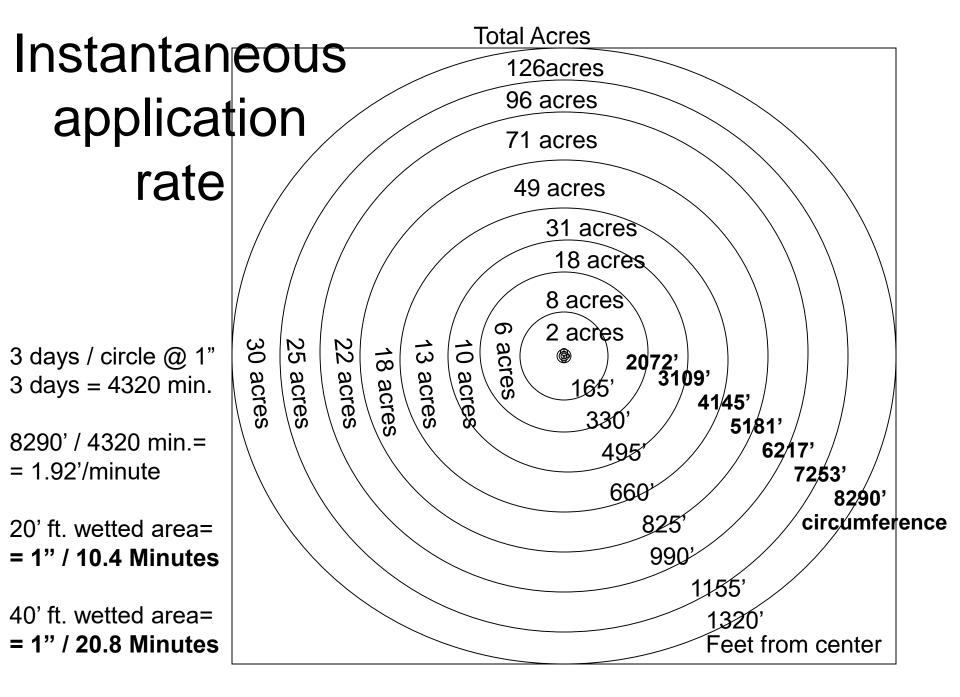

A- no observed puddling, ponding or sheen between rows

B- puddling, ponding or sheen between rows identified, but no observed runoff or flow of water

 $\ensuremath{\textbf{C}}\xspace$ -observed runoff or flow of water

Calculating Instantaneous Application Rate

- Flag the leading edge of the wetted area just inside of the last tower of the pivot.
- Running the pivot at common speed with a measured and known application rate.
- Using a stop watch measure the time elapsed from the first drops hitting the flag till the last.
- Divide the measured and known application rate for the spot by the time elapsed.
- Convert to Minute to provide 1 inch application.



- 1. Time it from first drop of irrigation to last
- 2. Divide by know application rate
- 3. Convert to minute to provide 1" of irrigation

John applied .75 inches in 21 minute

 $\frac{.75 \text{ inches}}{21 \text{ min.}} = \frac{1.00 \text{ inches}}{221 \text{ min.}} = 28 \text{ min./inch}$

The larger the wetted area the slower the rate of application. Average 1' rainfall comes over 4 hours.

An 1' rainfall over an hour is considered a "toad strangler"

Sprinkler packages are commonly available with instantaneous application rates from 1" per 12 minutes to 1" per 80 minutes

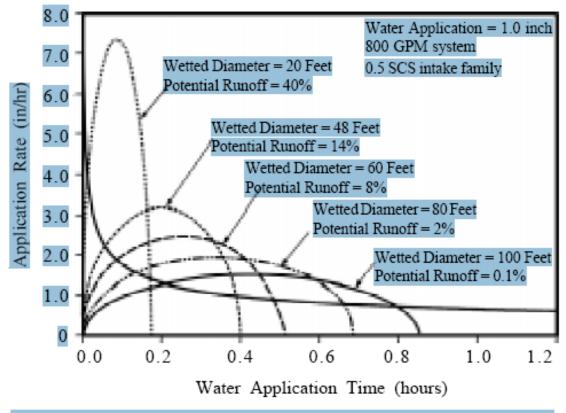


Figure 8. Effect of wetted diameters on the potential for runoff.

NebGuide – G-1532- Operating Characteristics of Center Pivot sprinklers